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Executive Summary

This technical memorandum contains the details of the linear error analysis performed for
the Residual Equilibrium Discrete Diffusion Monte Carlo (REqDDMC) Method. These details
are meant to support the “Linear Error Analysis” section of the paper, A Residual Monte

Carlo Method for Discrete Thermal Radiative Diffusion, by T.M. Evans, T.J. Urbatsch,
H. Lichtenstein, J.E. Morel, LA-UR-02-6206, accepted by the Journal of Computational Physics
in March 2003.

1. Introduction

Quantifying the gain of the REqDDMC method over the conventional EqDDMC method is not
straightforward because each method converges the statistical error, σ, at a different rate. Also,
the amount of work in each methods varies differently with the number of particles and cells. The
usual metric for comparing linear Monte Carlo methods, the Figure-of-Merit [1] (FOM) will not
suffice here, except for snapshot comparisons. The FOM,

FOM =
1

σ2TCPU
, (1)

where σ is the standard deviation and TCPU is the computer (CPU) time, assumes that the methods
converge the statistical error according to the Central Limit Theorem,

σ =
c
√
N

, (2)

where N is the number of particles. The FOM is used typically to measure the effectiveness of
variance reduction techniques in minimizing the constant c in Eq. (2).

2. Gain

To compare REqDDMC with EqDDMC, we will compare errors as a function of computer time for
the linear case of a single timestep. For each method, we have analytical expressions for both the
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convergence rate and the computer time. The coefficients of these expressions are unknown, but
we can determine them heuristically. Once the coefficients are determined, we can parameterize in
numbers of particles, particles per stage, stages, and residual convergence criterion to functionally
determine the residual gain,

Gain(t) =
εEqDDMC(t)

εREqDDMC(t)
, (3)

as a function of computer time, where the error, ε, for each method is evaluated for the same
computer time. Then we can plot the gain as a function of computer time.

Our linear error analysis shows rapidly increasing residual gains of up to 10 orders of magnitude.
This residual gain represents what can be achieved in a linear Monte Carlo calculation or in one
linearized timestep of a nonlinear Monte Carlo calculation. The actual gain in a REqDDMC
calculation depends on the linear, residual gain each timestep and the propagation of deterministic
and stochastic errors over multiple timesteps.

3. Computer Time

The average computer time necessary to track a particle is the same for both the EqDDMC and
REqDDMC methods. That time will depend on both the timestep and the optical thickness of
the cells. The cell-dependent source and tally calculations before and after a REqDDMC stage are
essentially the same as those before and after an EqDDMC timestep, so we can generalize the cost
of that work with an average time per cell per stage, understanding that an EqDDMC timestep
has only one stage. The CPU time for an EqDDMC timestep is

tEqDDMC = tpNEqDDMC + tcsNcells , (4)

where Ncells is the number of cells, NEqDDMC is the number particles per EqDDMC timestep, tp is
the average CPU time per particle, and tcs is the CPU time per cell per stage. Both tp and tcs are
the same for the EqDDMC and REqDDMC methods. The CPU time for an REqDDMC timestep
is

tREqDDMC = (tpNps + tcsNcells)Nstages , (5)

where Nps is the number of particles per stage and Nstages is the number of stages. For a single
timestep, the total number of REqDDMC particles is

NREqDDMC = NpsNstages . (6)

All calculations were performed on a LINUX-based Pentium IV processor.

4. Errors

Equation (2), σEqDDMC = c/
√
N , is the expression for the statistical error convergence in one

timestep of EqDDMC. The expression for the exponential error convergence in one timestep of the
REqDDMC method is

σREqDDMC = e−bN , (7)
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where b > 0 [2].

We may estimate the errors by either running replicate non-analytic calculations and performing
ensemble statistics or by comparing individual calculations to analytic solutions. Then, by changing
N and determining a new value of the error, we can back out the constants b and c.

5. Results and Conclusions

For the linear error analysis, we consider one timestep of a steady-state, homogeneous, infinite
medium problem, which has an analytic solution equal to its initial condition. In our simulation,
the nominal cell size is 0.005 cm, the nominal time step is 10−4 shakes, the density is 3.0 g/cc,
the absorption coefficient is a constant 100.0 cm2/g, and the specific heat is 0.1 Jerks/g/keV. The
problem has 100 cells with reflecting boundary conditions and an initial temperature of 1 keV.

We determine the CPU time per particle, tp, by running a set of one-cycle problems with a number
of particles ranging from 1 to 106. We found tp to be relatively insensitive to the cell size and
timestep in the neighborhood of our nominal parameters, as shown in Table 1. Given the data in

TABLE 1: CPU time per particle, tp, in µsec.

∆t (sh)
∆x (cm) 10−2 10−3 10−4 10−5 10−6 10−7

0.5 57 57 57 57 57 57
0.05 49 48 47 48 48 48
0.005 57 48 47 48 47 47
0.0005 153 48 48 47 47 47

Table 1, we conservatively set the CPU time per particle as

tp = 5× 10−5 sec . (8)

To determine the CPU time per cell per stage, tcs, we ran a set of 1000–cycle EqDDMC problems
with a small number, 10, of particles, and with the number of cells varying up to 105. Given the
resulting runtimes in Table 2, we set the CPU time per cell per stage as

TABLE 2: Runtime data from 1000–cycle runs for increasing numbers of cells.

Ncells runtime (sec)

1 0.595
10 0.737
100 0.507
1000 5.048
10000 52.933
100000 537.373

tcs = 5.4× 10−6 sec . (9)
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FIG. 1: The exponential error convergence of the REqDDMC method is shown compared to the
inverse-root-N convergence of the stock EqDDMC for the linear case of one timestep.

The errors for one cycle of both EqDDMC and REqDDMC are shown in Fig. 1. The errors are
measured as the l∞ norm of the temperature with respect to the analytic solution of unity. The
REqDDMC curve for each selection of Nps was formed by running REqDDMC eight times, varying
the convergence criterion from 10−1 to 10−8 in powers of ten. This particular problem required
at least 20 particles per stage. Requesting fewer than 20 particles in these problems resulted in
no particles being apportioned because of the stratified sampling we use for the source and the
uniformity of the source across the entire problem. From the error data, we ascertain the error
coefficients. For EqDDMC,

c = 1.4 . (10)

For the residual method, b is a function of the number of particles per stage and is determined
heuristically by the ratio of two points from each residual curve in Fig. 1. Table 3 shows the values
of b.

The linear error analysis requires knowledge of the number of stages required for the timestep.
Figure 2 shows the number of stages required for each set of REqDDMC calculations. The curves
are described approximately by

Nstages ≈ k log10(
ε

10
) , (11)

where k is a function of Nps and is tabulated in Table 3.

Now we have enough information to determine the residual gain as a function of CPU time. We
set

tEqDDMC = tREqDDMC , (12)
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FIG. 2: Required number of stages.

from Eqs. (4) and (5), and solve for NEqDDMC to obtain

NEqDDMC = NpsNstages +
tcs
tp
Ncells(Nstages − 1) . (13)

The analysis considered two cases of numbers of cells, Ncells = 100 and Ncells = 10
6. For each

Ncells, we looped over Nps values of 20, 50, 100, 1000, 10000. For each Nps, we obtain k and b from
Table 3. Then we loop over the convergence criteria from 10−1 to 10−8 in powers of ten. For each
case, we calculate Nstages from Eq. (11), NEqDDMC from Eq. (13), NREqDDMC from Eq. (6), the
CPU time from both Eq. (4) and Eq. (5) (and checking that they are the same), and, finally, the
residual gain as the ratio of the EqDDMC error to the REqDDMC error from Eqs. (2) and (7),
respectively. The residual gains, which approach 10 orders of magnitude, are shown in Fig. (3).

TABLE 3: Values of the coefficient, b, in Eq. (7), the expression for the residual EqDDMC error
convergence, and the coefficient, k, in Eq. (11), the expression for the number of stages.

Nps b k

20 1.47e-2 -9.7
50 8.58e-3 -5.7
100 5.54e-3 -4.3
1000 1.53e-3 -1.8
10000 2.66e-4 -1.2
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FIG. 3: Residual gain as a function of CPU time for 100 cells and 106 cells and varying numbers
of particles per stage.

Observing the gain curves in the 100-cell problem, we see the effects of the competing functions
of the overall exponential convergence and the first stage’s inefficient inverse-root-N convergence.
The 104 particles in just one stage takes longer than the 20 particles/stage case for any convergence
criterion. The deterministic overhead work for each stage is insignificant.

Observing the gain curves in the 106-cell problem, we see that the deterministic overhead work for
each stage dominates the cost of transporting particles. In fact, with too few particles per stage,
more stages are required, and the overall residual gain diminishes. Note that the dependence on
number of particles per stage is reversed: more particles per stage is better than less for the larger
number of cells. The 106-cell gain curves were generated with the 100-cell parameters, therefore
they do not represent the fact that this problem actually requires 106 requested particles (twice
that on the first stage) to sample the phase space sufficiently. Nonetheless, these curves accurately
represent the time requirements for transporting particles and for performing the deterministic
overhead for each stage.

The balance between transport work, deterministic overhead work per stage, stability, and adequate
sampling will become more important when we extend the REqDDMC method to two and three
spatial dimensions.
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